A. Ban or Pick, What’s the Trick
考虑记忆化搜索,接下来便是如何设计状态了。
一个很简单的想法就是[A剩余的英雄][B剩余的英雄][A选择的英雄][B选择的英雄],但是$1\leqslant n \leqslant 10^5$,这种想法根本做不了。
然后很容易发现,英雄总数$n$减去B剩余的和选择的就是A禁用的英雄数,而A禁用和A选择的英雄数就是A的操作数也即第几轮,而从这也可以推出A剩余的英雄数,所以有一个状态是多余的,所以我们只需要记录[*剩余的英雄][A选择的英雄][B选择的英雄]即可,所以只需要[*是A还是B][*剩余的英雄][A选择的英雄][B选择的英雄]。
然后记忆化搜素即可。
Code:
#include <bits/stdc++.h>
/*
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
*/
using namespace std;
const double eps = 1e-10;
const double pi = 3.1415926535897932384626433832795;
const double eln = 2.718281828459045235360287471352;
#define f(i, a, b) for (int i = a; i <= b; i++)
#define scan(x) scanf("%d", &x)
#define mp make_pair
#define pb push_back
#define lowbit(x) (x&(-x))
#define fi first
#define se second
#define SZ(x) int((x).size())
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define summ(a) (accumulate(all(a), 0ll))
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
using ll=long long;
ll n,k,a[(int)1e5+9],b[(int)1e5+9],f[2][(int)2e5+9][11][11];
ll dfs(int who,int turna,int turnb,int ahs,int bhs,int val){
if(turna==0&&turnb==0)return val;
if(ahs==k&&bhs==k)return val;
if(f[who][who?turnb:turna][ahs][bhs]!=0x3f3f3f3f3f3f3f3f)return f[who][who?turnb:turna][ahs][bhs]+val;
ll res1=114514,res2=415411;
bool ok1=0,ok2=0;
if(who){
if(turnb&&bhs<k)res1=dfs(who^1,turna-(!who),turnb-who,ahs,bhs+1,val-b[turnb]),ok1=1;
if(turna)res2=dfs(who^1,turna-(who),turnb-(!who),ahs,bhs,val),ok2=1;
}else{
if(turna&&ahs<k)res1=dfs(who^1,turna-(!who),turnb-who,ahs+1,bhs,val+a[turna]),ok1=1;
if(turnb)res2=dfs(who^1,turna-(who),turnb-(!who),ahs,bhs,val),ok2=1;
}
ll ans;
if(ok1&&ok2) ans=(who?min(res1,res2):max(res1,res2));
else if(ok1) ans=res1;
else ans=res2;
f[who][who?turnb:turna][ahs][bhs]=ans-val;
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
memset(f,0x3f,sizeof(f));
cin>>n>>k;
f(i,1,n)cin>>a[i];
f(i,1,n)cin>>b[i];
sort(a+1,a+1+n);
sort(b+1,b+1+n);
cout<<dfs(0,n,n,0,0,0);
return 0;
}
C. Catch You Catch Me
从根结点$1$开始dfs记录每个点子树的最大深度即可,然后答案是所有根结点后继子树的最大深度值之和。
Code:
#include <bits/stdc++.h>
/*
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
*/
using namespace std;
const double eps = 1e-10;
const double pi = 3.1415926535897932384626433832795;
const double eln = 2.718281828459045235360287471352;
#define f(i, a, b) for (int i = a; i <= b; i++)
#define scan(x) scanf("%d", &x)
#define mp make_pair
#define pb push_back
#define lowbit(x) (x&(-x))
#define fi first
#define se second
#define SZ(x) int((x).size())
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define summ(a) (accumulate(all(a), 0ll))
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
using ll=long long;
ll n,dep[(int)1e5+9];
vi g[(int)1e5+9];
void dfs(int u,int fa){
ll res=0;
for(auto it:g[u]){
if(it!=fa){
dfs(it,u);
}
res=max(res,dep[it]);
}
dep[u]=res+1;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
for(int i=1,x,y;i<n;++i){
cin>>x>>y;
g[x].push_back(y),g[y].push_back(x);
}
dfs(1,0);
ll ans=0;
for(auto it:g[1])ans+=dep[it];
cout<<ans;
return 0;
}
H. Life is Hard and Undecidable, but…
容易发现只要斜线构造$2\times k-1$个点就好了
Code:
#include <bits/stdc++.h>
/*
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
*/
using namespace std;
const double eps = 1e-10;
const double pi = 3.1415926535897932384626433832795;
const double eln = 2.718281828459045235360287471352;
#define f(i, a, b) for (int i = a; i <= b; i++)
#define scan(x) scanf("%d", &x)
#define mp make_pair
#define pb push_back
#define lowbit(x) (x&(-x))
#define fi first
#define se second
#define SZ(x) int((x).size())
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define summ(a) (accumulate(all(a), 0ll))
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
using ll=long long;
ll k;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>k;
cout<<2*k-1<<"\n";
f(i,1,2*k-1){
cout<<i<<" "<<i<<"\n";
}
return 0;
}
G. Let Them Eat Cake
一开始看错题了,以为是both
模拟即可
Code:
#include <bits/stdc++.h>
/*
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
*/
using namespace std;
const double eps = 1e-10;
const double pi = 3.1415926535897932384626433832795;
const double eln = 2.718281828459045235360287471352;
#define f(i, a, b) for (int i = a; i <= b; i++)
#define scan(x) scanf("%d", &x)
#define mp make_pair
#define pb push_back
#define lowbit(x) (x&(-x))
#define fi first
#define se second
#define SZ(x) int((x).size())
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define summ(a) (accumulate(all(a), 0ll))
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
using ll=long long;
ll n,a[(int)1e5+9],l[(int)1e5+9],r[(int)1e5+9],ans;
bitset<(int)1e5+9> vis;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
vi v(n);
for(auto &it:v)cin>>it;
while(v.size()>1){
ans+=1;
vis.reset();
vi tmp;
ll len=v.size();
for(int i=0;i<len;++i){
if(i!=0)if(v[i]<v[i-1])vis[i]=true;
if(i!=len-1)if(v[i]<v[i+1])vis[i]=true;
}
for(int i=0;i<len;++i){if(!vis[i])tmp.push_back(v[i]);}
v=tmp;
}
cout<<ans<<"\n";
return 0;
}
M. Rock-Paper-Scissors Pyramid
容易发现如果相邻两个格子,后者可以赢前者,那么前者是过不去后者的,所以可以先用栈来模拟,遇到此类情况一直弹出即可。
然后栈内的情况均会是底下的可以赢上面的,所以一直弹出到最底下那个,输出即可。
Code:
#include <bits/stdc++.h>
/*
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
*/
using namespace std;
const double eps = 1e-10;
const double pi = 3.1415926535897932384626433832795;
const double eln = 2.718281828459045235360287471352;
#define f(i, a, b) for (int i = a; i <= b; i++)
#define scan(x) scanf("%d", &x)
#define mp make_pair
#define pb push_back
#define lowbit(x) (x&(-x))
#define fi first
#define se second
#define SZ(x) int((x).size())
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define summ(a) (accumulate(all(a), 0ll))
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef vector<int> vi;
using ll=long long;
ll tt;
char s[(int)1e6+9];
map<char,map<char,int>>win;
int main()
{
win['S']['P']=1,win['P']['R']=1,win['R']['S']=1;
win['S']['S']=1,win['P']['P']=1,win['R']['R']=1;
scanf("%lld",&tt);
f(sb,1,tt){
stack<char> st;
scanf("%s",s+1);
ll n=strlen(s+1);
st.push(s[1]);
for(int i=2;i<=n;++i){
while(!st.empty()&&win[s[i]][st.top()])st.pop();
st.push(s[i]);
}
while(st.size()>1)st.pop();
cout<<st.top()<<"\n";
}
return 0;
}